Modern Robots
Mobile Robots
Mobile robots have the capability to move around in their environment and are not fixed to one physical location. An example of a mobile robot that is in common use today is the automated guided vehicle or automatic guided vehicle (AGV). An AGV is a mobile robot that follows markers or wires in the floor, or uses vision or lasers. AGVs are discussed later in this article.
Mobile robots are also found in industry, military and security environments. They also appear as consumer products, for entertainment or to perform certain tasks like vacuum cleaning. Mobile robots are the focus of a great deal of current research and almost every major university has one or more labs that focus on mobile robot research.
Mobile robots are usually used in tightly controlled environments such as on assembly lines because they have difficulty responding to unexpected interference. Because of this most humans rarely encounter robots. However domestic robots for cleaning and maintenance are increasingly common in and around homes in developed countries. Robots can also be found in a military pplications.
Industrial robots (manipulating)
Industrial robots usually consist of a jointed arm (multi-linked manipulator) and an end effector that is attached to a fixed surface. One of the most common type of end effector is a gripper assembly.
The International Organisation of Standardization gives a definition of a manipulating industrial robot in ISO 8373:
"an automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications."
This definition is used by the International Federation of Robotics, the European Robotics Research Network (EURON) and many national standards committees.
Service robot
Most commonly industrial robots are fixed robotic arms and manipulators used primarily for production and distribution of goods. The term "service robot" is less well-defined. The International Federation of Robotics has proposed a tentative definition, "A service robot is a robot which operates semi- or fully autonomously to perform services useful to the well-being of humans and equipment, excluding manufacturing operations."
Modular robot
Modular robots are a new breed of robots that are designed to increase the utilization of the robots by modularizing the robots. The functionality and effectiveness of a modular robot is easier to increase compared to conventional robots. These robots are composed of a single type of identical, several different identical module types, or similarly shaped modules, which vary in size. Their architectural structure allows hyper-redundancy for modular robots, as they can be designed with more than 8 degrees of freedom (DOF). Creating the programming, inverse kinematics and dynamics for modular robots is more complex than with traditional robots. Modular robots may be composed of L-shaped modules, cubic modules, and U and H-shaped modules. ANAT technology, an early modular robotic technology patented by Robotics Design Inc., allows the creation of modular robots from U and H shaped modules that connect in a chain, and are used to form heterogeneous and homogenous modular robot systems. These “ANAT robots” can be designed with “n” DOF as each module is a complete motorized robotic system that folds relatively to the modules connected before and after it in its chain, and therefore a single module allows one degree of freedom. The more modules that are connected to one another, the more degrees of freedom it will have. L-shaped modules can also be designed in a chain, and must become increasingly smaller as the size of the chain increases, as payloads attached to the end of the chain place a greater strain on modules that are further from the base. ANAT H-shaped modules do not suffer from this problem, as their design allows a modular robot to distribute pressure and impacts evenly amongst other attached modules, and therefore payload-carrying capacity does not decrease as the length of the arm increases. Modular robots can be manually or self-reconfigured to form a different robot, that may perform different applications. Because modular robots of the same architecture type are composed of modules that compose different modular robots, a snake-arm robot can combine with another to form a dual or quadra-arm robot, or can split into several mobile robots, and mobile robots can split into multiple smaller ones, or combine with others into a larger or different one. This allows a single modular robot the ability to be fully specialized in a single task, as well as the capacity to be specialized to perform multiple different tasks.
Modular robotic technology is currently being applied in hybrid transportation, industrial automation, duct cleaning and handling. Many research centres and universities have also studied this technology, and have developed prototypes
Collaborative robots
The collaborative robots most widely used in industries today are manufactured by Universal Robots in Denmark.A collaborative robot or Cobot is a robot that can safely and effectively interact with human workers in performance of simple industrial tasks. However, end-effectors and other environmental conditions could create a hazard, and a risk assessment should be done with any industrial motion control application.
Baxter, introduced on September 18, 2012, a product of Rethink Robotics, whose principal was Rodney Brooks, was an industrial robotselling for about $20,000 which was designed to safely interact with neighboring human workers and be programmable for the performance of simple tasks.The robot stops if its movement encounters a human in the way of its robotic arm and has a prominent off switch which its human partner can push if necessary. The product, intended for sale to small business, was touted as the robotic analogue of the personal computer. Costs were projected to be the equivalent of a worker making $4 an Hour
No comments:
Post a Comment